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SUMMARY

A particle–gridless hybrid method for the analysis of incompressible flows is presented. The numerical
scheme consists of Lagrangian and Eulerian phases as in an arbitrary Lagrangian–Eulerian (ALE)
method, where a new-time physical property at an arbitrary position is determined by introducing an
artificial velocity. For the Lagrangian calculation, the moving-particle semi-implicit (MPS) method is
used. Diffusion and pressure gradient terms of the Navier–Stokes equation are calculated using the
particle interaction models of the MPS method. As an incompressible condition, divergence of velocity
is used while the particle number density is kept constant in the MPS method. For the Eulerian
calculation, an accurate and stable convection scheme is developed. This convection scheme is based on
a flow directional local grid so that it can be applied to multi-dimensional convection problems easily. A
two-dimensional pure convection problem is calculated and a more accurate and stable solution is
obtained compared with other schemes. The particle–gridless hybrid method is applied to the analysis of
sloshing problems. The amplitude and period of sloshing are predicted accurately by the present method.
The range of the occurrence of self-induced sloshing predicted by the present method shows good
agreement with the experimental data. Calculations have succeeded even for the higher injection velocity
range, where the grid method fails to simulate. Copyright © 1999 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Computer simulation has been required to analyse increasingly complex geometry and physics
problems. However, there are still many thermal-hydraulic problems that are difficult to
analyse with conventional grid methods, such as finite difference or finite element methods.
Recently, numerical methods that do not use any grid structure were developed for the
application to the analyses of thermal-hydraulic problems having complex geometries and
interfaces where the conventional grid methods suffer from mesh generation. These meshless
methods can be roughly classified into two groups: (1) those based on Lagrangian (particle)
methods, such as smoothed particle hydrodynamics (SPH) [1,2] and moving-particle semi-im-
plicit (MPS) [3,4] and (2) those based on Eulerian (gridless) methods, such as a gridless
Euler/Navier–Stokes solution algorithm [5] and element free Galerkin (EFG) [6].
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In particle methods, each particle moves in Lagrangian co-ordinates and convection is
directly calculated by the motion of particles without numerical diffusion. SPH has been used
in astrophysics to determine the fluid dynamics of interstellar gas, which is regarded as a
compressible invicid fluid. The MPS method has been developed for the application to
incompressible viscous flow. In the MPS method, the motion of each particle is calculated
through interactions with neighbouring particles covered with a weight function. All terms in
the Navier–Stokes equation, such as gradient and Laplacian terms are represented by the
deterministic particle interaction models. Pressure is calculated implicitly by using the incom-
pressibility condition of constant particle number density. Dam breaking [3,7] and vapour
explosion [4,8] were calculated with fluid fragmentation using the MPS method. As long as a
problem can be described in Lagrangian co-ordinates, many complicated problems can be
calculated easily by the MPS method. In many situations, however, there exists inflow or
outflow making it difficult to trace a particle in Lagrangian co-ordinates.

As an Eulerian approach, Batina has introduced a gridless method for the solution of
Navier–Stokes equation. In this method, a physical property is interpolated linearly based on
the least-squares and the spatial derivatives in the governing equations are found to be the
coefficients of the linear function. Thus, it allows the use of fields of points where the points
are more appropriately located and clustered, which makes it easier to apply to complex
geometry than the grid methods. Although this method can be applied easily to arbitrary
clouds of points, a large amount of numerical diffusion is inevitable during the calculation of
convection and the artificial dissipation must be added explicitly to the solution procedure.

A less diffusive numerical algorithm, cubic interpolation in area co-ordinates with a
triangular unit (CAT) [9], was proposed based on the CIP [10] in two dimensions. The
accuracy of the gridless method was markedly improved by introducing a higher-order
interpolation scheme. In this method, a particle moves in Lagrangian co-ordinates and goes
back to its original position using the CIP interpolation in one time step. In general, a particle
does not need to go back to its original position and can be placed freely. This concept
corresponds to the arbitrary Lagrangian–Eulerian (ALE) method [11], where a new-time
property at an arbitrary position is determined by introducing artificial velocities. It is essential
in this method, to construct well-defined triangles out of arbitrarily distributed particles since
all the calculations are carried out in area co-ordinates with triangular units. Sometimes,
however, construction of a well-defined triangle is troublesome, especially when the computing
points are scattered at random. In three dimensions, making a tetrahedron from random
points is a laborious task.

In this paper an accurate and stable gridless method that can be applied to multi-dimen-
sional convection problems is proposed based on a flow directional local grid. This numerical
scheme consists of four stages: (1) a one-dimensional local grid is generated in the flow
direction of each particle, (2) physical properties of the local grid points are interpolated using
a weight function, (3) a higher-order convection scheme is applied to the one-dimensional local
grid and (4) a filtering scheme MMT [12] is applied to get a stable solution. Utilisation of a
weight function used in the MPS method makes this scheme completely free from grid
structure. Numerical diffusion occurring during the interpolation is kept small by applying a
higher-order difference scheme to the flow directional local grid. Propagation of a two-dimen-
sional square wave is simulated using the present method and the results are compared with
the previous gridless schemes for both uniform and random particle distributions.

Combining the present gridless method with the MPS method, a particle–gridless hybrid
method is proposed for the analysis of incompressible flows having inlet or outlet boundaries.
In the MPS method, the particle number density is kept constant as the incompressible
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condition because the particle number density is proportional to the fluid density. The
pressure is calculated by solving the pressure Poisson equation where the deviation of the
particle number density is used as a source term. However, the incompressibility model
using the particle number density can not be applied to the present study because the
particle number density does not change in Eulerian co-ordinates. Instead, a new incom-
pressibility model where the velocity divergence is calculated using a weight function is
proposed.

Sloshing problems induced by an external pressure spike and an internal flow are calcu-
lated using the present method. Since the boundary condition at the free-surface is non-lin-
ear, the flow with free-surfaces is complex and sometimes not unique. Several numerical
simulation methods had been proposed to predict the flow with free-surfaces. In the marker
and cell method (MAC) [13] and the volume of fluid method (VOF) [14], the free-surface
was tracked with the fixed grid system. The free-surface location was determined by the
distribution of the markers and the volume of fluid in each cell respectively. In the
boundary fitted co-ordinate method (BFC) [15,16], the free-surface was tracked with La-
grangian–Eulerian flexible grids. These methods could simulate relatively small displace-
ment of free-surface. When the velocity under the free-surface or the amplitude of the wave
increases, large deformation of the free-surface occurs, causing the simulation to be diffi-
cult. These difficulties are overcome by the present method since a large deformation of
the free-surfaces can be analysed using the particle interaction models of the MPS method
[3,7].

2. GOVERNING EQUATIONS

Governing equations for incompressible flows are the continuity and the Navier–Stokes
equations as follows:

9 ·u=0, (1)

(u
(t

+u ·9u= −
1
r

9P+n92u+ f. (2)

Pressure gradient and diffusion terms in the right side of the Navier–Stokes equation are
calculated using the particle interaction models developed in the MPS method. For the
calculation of pressure, a new incompressibility model using velocity divergence is devel-
oped. The left side of Equation (2) shows convection of a fluid in Eulerian co-ordinates. A
higher-order convection scheme using a flow directional local grid is presented for the
calculation of convection.

3. NUMERICAL METHODS

3.1. MPS models

In the MPS method a particle interacts with others in its vicinity covered with a weight
function w(r), where r is the distance between two particles. In this study, the following
function is employed
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Since the area that is covered with this weight function is bounded, a particle interacts with a
finite number of neighbouring particles. The radius of the interaction area is determined by a
parameter re. Then the particle number density at a co-ordinate ri is defined by

�n�i=%
j

w(�rj−ri �). (4)

Assuming that the particles have the same mass m, the fluid density is proportional to the
particle number density:

�r�i=
m�n�i&

V

w(r) d6
. (5)

A gradient vector between two particles i and j possessing scaler quantities fi and fj at
co-ordinates ri and rj is simply defined by (fj−fi)(rj−ri)/�rj−ri �2. The gradient vector at the
particle i is given as the weighted average of these gradient vectors:

�9f�i=
d
n0 %

j" i

�fj−fi

�rj−ri �2
(rj−ri)w(�rj−ri �)n, (6)

where d is the number of space dimensions and n0 is the particle number density. This model
is not sensitive to absolute pressure. This is consistent with the property of incompressible
fluids, which only depend on the relative pressure distribution.

Laplacian is an operator representing diffusion. In the MPS method, diffusion is modelled
by distribution of a quantity from a particle to its neighbouring particles by use of the weight
function:

�92f�i=
2d
ln0 %

j" i

[(fj−fi)w(�rj−ri �)], (7)

where l is a parameter by which the variance increase is equal to that of the analytical
solution:

l=

&
V

w(r)r2 d6&
V

w(r) d6
. (8)

When the space is two dimensions and Equation (3) is employed as the weight function, the
parameter l is

l=
31
140

re
2. (9)

This Laplacian model is conservative since the quantity lost by the particle i is just obtained
by the particle j.
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3.2. Incompressibility model

Generally the continuity equation for incompressible fluid can be written as follows:

Dr

Dt
= −r(9 ·u)=0. (10)

In the MPS method, Dr/Dt=0 is used for the incompressibility model where the particle
number density keeps a constant value of n0. When the calculated particle number density n*
is not n0, it is implicitly corrected to n0. In this model, the particle number density must be
proportional to the fluid density, i.e. all the particles should have the same mass. Thus, the
local concentration of particles is not allowed.

However, in some situations the concentration of particles is required, for instance, near the
boundary. In addition, the particle number density does not change in Eulerian co-ordinates.
By using −r(9 ·u)=0 in Equation (10), these difficulties can be eliminated. As in the same
way of the gradient model, the velocity divergence between two particles i and j is defined by
(uj−ui) ·(rj−ri)/�rj−ri �2. Then the velocity divergence at the particle i is given by the following
equation (Figure 1)

�9 ·u�=
d
n0 %

j" i

(uj−ui) ·(rj−ri)
�rj−ri �2

w(�rj−ri �). (11)

From Equations (2) and (10) pressure is calculated implicitly:

ui**−ui*
Dt

= −
1
r

�9Pn+1�i, (12)

�92Pn+1�i=
r

Dt
�9 ·u*�i, (13)

where ui* is the temporal velocity obtained from the explicit calculation and ui** is the
new-time velocity. The right side of Equation (13) is the velocity divergence, which is
calculated using Equation (11). The left side of Equation (13) is calculated using the Laplacian
model shown in Equation (7). Then one has simultaneous equations expressed by a linear
symmetric matrix. These are solved by the incomplete Cholesky conjugate gradient (ICCG)

Figure 1. Concept of divergence model.
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Figure 2. Movement of a particle for the particle–gridless hybrid method.

method. After the pressure calculation, the new-time velocity ui** is calculated from Equation
(12). The gradient model of Equation (6) is applied to the right side of Equation (12). Since
this incompressibility model is based on the velocity divergence, the particle number density is
allowed to vary and more particles can be placed locally when detailed analysis is needed.

3.3. A higher-order gridless con6ection scheme

As long as the fluid is isolated from the outside, it can be analysed successfully using the
MPS method without solving the convection terms. However, in the problems where inlet and
outlet boundaries exist, it is difficult to trace a particle in Lagrangian co-ordinates. In these
problems, Eulerian co-ordinates are used and the convection terms are solved explicitly.

The Lagrangian and Eulerian calculations are combined using the concept of the CAT
method, where a solution of a convection equation is substituted by f(t+Dt, r)= f(t, r−Dtu).
First, a particle located at ri

n moves to a new position ri** using the velocity ui** obtained from
the Lagrangian calculation by a particle method. Then, the new-time properties at ri

n+1 are
calculated by

f(t+Dt, ri
n+1)= f(t, ri**−Dtui

a). (14)

By using an arbitrary convection velocity ui
a that can be different from the fluid velocity ui**,

new-time properties at an arbitrary point (computing point) ri
a can be interpolated (Figure 2).

Depending on the velocity ui
a, an arbitrary Lagrangian–Eulerian calculation is possible

between the fully Eulerian (ui
a=ui**) and the fully Lagrangian (ui

a=0) calculations.
In this section an accurate and stable convection scheme is presented for the particle–grid-

less hybrid method. This scheme consists of four stages as discussed in the following.

3.3.1. Generation of flow directional local grid. In convection, a fluid property is changed
along the streamline. Thus, any multi-dimensional convection problem can be regarded as a
one-dimensional problem if a computational grid is generated along the flow direction.
Considering the flow direction of each computing point (particle), a one-dimensional local grid
is generated as shown in Figure 3. Locations and the number of local grid points are
determined based on the difference scheme which will be applied to. In this study, two
upstream and one downstream grid points are added for the QUICK [17] scheme.

3.3.2. Local interpolation. For the three local grid points on the one-dimensional local grid,
the physical properties are interpolated from those of neighbouring particles. A physical
property of fi is calculated from the surrounding discrete values, fj, as in the same way of MPS
or SPH.
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fi=
%
j

fjw(�rj−ri �)

%
j

w(�rj−ri �)
. (15)

Equation (3) is utilised as the weight function in Equation (15). The interpolation region is
limited by a circle (sphere for three dimension) of radius re and the lines vertical to the flow
direction (Figure 3). If all the particles in re distance are used, the interpolation region overlaps
for adjacent local grid points and this causes more numerical diffusion.

3.3.3. Con6ection scheme. Any higher-order difference scheme can be applied easily since a
one-dimensional grid has been obtained along the flow direction. A second-order upwind
scheme QUICK is applied to those four grid points shown in Figure 3:

f0 in+1= f i
n−q

�1
8

f i−2
n −

7
8

f i−1
n +

3
8

f i
n+

3
8

f i+1
n �

, (16)

q=
(u2+62)1/2Dt

Dr
, (17)

where Dr is the distance between the local grid points.

3.3.4. MMT filtering. Usually a higher-order scheme results in oscillatory solutions. To
prevent the overshoot and undershoot in the solution obtained in the third stage, a filtering
scheme MMT is applied. Maximum and minimum limits are calculated at each time step and
the solution of a higher-order calculation is bounded by them.

f i
n+1=Í

Á

Ä

f0 in+1

min( f i
n)

max( f i
n)

min( f i
n)5 f0 in+15max( f i

n)
f0 in+1Bmin( f i

n)
f0 in+1\max( f i

n)
. (18)

Here min( f i
n) and max( f i

n) are calculated within the one-dimensional local grid.

Figure 3. Generation of flow directional local grid.
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Figure 4. Calculation algorithm of the particle–gridless hybrid method.

The overall algorithm of the particle–gridless hybrid method is shown in Figure 4. In each
time step, source and diffusion terms are explicitly calculated, and temporal velocities u* and
co-ordinate r* are obtained. The Poisson equation of pressure is solved with the source term
representing the velocity divergence, and then co-ordinates and velocities are corrected to r**
and u**. After the Lagrangian calculation, a new particle positions rn+1 and convection
velocities ua are determined. Finally, one has new-time properties using the convection scheme.

3.4. Boundary conditions

In a gridless method, an interpolated quantity at boundary � f�b.c. does not coincide with
the exact value fb.c. When a strict condition is needed at the boundary, a set of simultaneous
equations have to be solved for the quantities at the particles beyond the boundary. Instead of
solving a matrix, boundary values are assigned explicitly to the particles beyond the boundary
so that the interpolated value � f�b.c. approximate fb.c. For example, in a free-slip condition,
the velocity of an outside particle that is parallel to the wall is equal to that of the nearest inner
particle. In a no-slip condition, the velocity distribution of the outside particles are given to be
opposite to that of the inner particles. The Neumann boundary condition is applied to the

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 30: 407–424 (1999)
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implicit calculation of pressure Poisson equation. This pressure boundary condition is easily
implemented through the Laplacian model in Equation (7). If there is N inside particles, one
has N simultaneous linear equations expressed by an N×N symmetric matrix where the
coefficients of the matrix are given by Equation (7). The Neumann boundary condition is
satisfied if the pressure of a particle j beyond the boundary equals that of the boundary
particles, i.e. Pj=Pi. This may be approximated by an alternative expression of Equation (7).

�92P�i=
2d
ln0 %

j" i
j"out

(Pj−Pi)w(�rj−ri �). (7a)

4. TEST CALCULATION

4.1. Two-dimensional con6ection problem

The accuracy and the stability of the present convection scheme is examined in a two-dimen-
sional problem of pure convection. A time-dependent two-dimensional convection equation for
this test calculation is expressed as follows:

(f
(t

+u
(f
(x

+6
(f
(y

=0. (19)

Figure 5 shows the initial profile of a square wave that rotates anti-clockwise with an
angular velocity v=p/5. One revolution of the square wave is simulated using 104 particles.
Particle distribution is assumed uniform or random.

Time step Dt is limited by the Courant condition just like in the conventional difference
scheme. For instance, in a convective calculation, Dt is determined by Dt5Dravg/u where Dravg

is the average particle distance. In this study, Dt is fixed at 0.005 for all cases. Both re and Dr
are assumed as 1.5 times of the average distance between adjacent particles. The optimum

Figure 5. Test problem.
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Figure 6. Comparison of the results with and without filter.

values of re and Dr are investigated in the next section. In this calculation the artificial
convection velocity ui

a in Equation (14) is equal to the velocity of flow ui** for a pure Eulerian
calculation.

Figure 6 shows the profile after one revolution predicted by the present scheme with and
without the MMT filter. The overshoot and undershoot are large in a cross-section A without
the filter. However, the overshoot and undershoot have been successfully removed after the
MMT filtration. Figure 7 show the profiles predicted by the present scheme, CAT and the
least-square method with uniform particle distribution. The profile predicted by the least-
square method is broadened due to the excessive numerical diffusion. Accurate profiles are
obtained in the calculations with the present scheme and the CAT method and more stable
solution is obtained with the present scheme. Figure 8 shows the comparison with random
particle distribution. The particle distribution is obtained by distorting the uniform distribu-
tion slightly. When the particle distribution is highly random, calculation with the CAT
method fails due to the bad-shaped triangles. Compared with the uniform distribution case, the
present scheme shows more accurate and stable results than the others.

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 30: 407–424 (1999)
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4.2. Optimum radius of weight function and local grid size

The radius of weight function re and local grid size Dr are important parameters for
interpolation. When re is small, numerical instability occurs since there is not enough particles
for interpolation. A large re results in inaccurate solutions and a longer computation is needed
for interpolation. The smallest re that does not cause numerical instability is chosen as an
optimum value. It is not necessary to use a common value of re for each calculation model,
gradient model in Equation (6), divergence model in Equation (11), Laplacian model in
Equation (7) and local interpolation in Equation (15). In a previous study [7], it had been
already optimised for gradient and Laplacian models as 2.0 and 4.0 times of average particle
distance Dravg respectively. The same value of re that is employed in the gradient model is used
for divergence calculations since the formulations are similar to each other. To optimise the
radius of weight function re and the local grid size Dr, sensitivity analysis is carried out with
respect to re and Dr for random particle distribution. The two-dimensional convection problem
in Equation (19) is calculated with various re and Dr. Figure 9 shows the mean square errors
of each calculation. When re is smaller than 1.3 Dravg, the neighbouring particles are so small

Figure 7. Comparison of various gridless methods (uniform).
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Figure 8. Comparison of various gridless methods (random).

that numerical instability occurs. The error grows as re becomes large. re=1.5 Dravg is chosen
for the present study as the smallest value that does not cause the numerical instability. With
respect to the local grid size Dr, the error becomes small when Dr is between 1.5 Dravg and
2.5 Dravg. In this study, 1.5 Dravg is used for Dr in accordance with re.

Figure 9. Effect of re and local grid size in local interpolation.
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Figure 10. Amplitude of spike and bubble.

5. ANALYSIS OF INCOMPRESSIBLE FLOW WITH A FREE-SURFACE

5.1. Sloshing initiated by a pressure spike

The first example is chosen to show that the present method can simulate the oscillatory
free-surface motion initiated by external excitation. A two-dimensional rectangular vessel of
the width of 4.8 units is filled with liquid to the height of 4.0 units. The fluid has the unit
density and the viscosity of 0.01. Surface tension is not specified. The unit gravity acceleration
works downwards. A pressure spike of the cosine profile of the unit strength initiates the
oscillation of free-surface. This benchmark problem was first proposed by Harlow and Welch,
who analysed the problem with the marker-and-cell (MAC) [18] method. Ramaswamy and
Kawahara [19] calculated the problem with the Lagrangian finite element method. Recently,
the problem was analysed by Takizawa et al. with the physical component boundary fitted
co-ordinate (PCBFC) [15] method using 120 cells with the central difference scheme. In the
present work, the problem is analysed with the particle–gridless hybrid method using 1043
computing points. Free-slip conditions are imposed on the wall particles. To avoid the
numerical drag on the wall, the left and right wall particles are moved depending on the
free-surface level. After the Lagrangian phase, particle positions are redistributed so that only
the vertical co-ordinates are changed with respect to the elevation of the free-surface.

The accuracy of the gradient and the divergence models in Equations (6) and (11)
respectively, are dependent upon the particle distribution. This is illustrated in the following
equation, where Equation (6) is expanded using a Taylor series for the one-dimensional case.

Err=
#(f
(x
$

i

−
(f
(x
)
i

=
1

2ni

(2f
(x2

)
i

%
j" i

(xj−xi)wji+
1

6ni

(3f
(x3

)
i

%
j" i

(xj−xi)2wji+ · · · (20)

In Equation (20), the first-order term in the right-hand-side becomes large near the free-surface
where the particles are distributed asymmetrically. To reduce the error on the free-surface, one
additional layer of ‘ghost’ particles are located above the free-surface for the calculation of
pressure gradient.

Amplitudes of a spike (higher end) and a bubble (lower end) of the free-surface in its half
period are shown in Figure 10 with those obtained by the linear theory, the MAC method and
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the PCBFC method. Both the amplitude and the period of sloshing estimated by the present
method agree well with the results by the MAC and the PCBFC methods. Computed
free-surfaces and flows up to 8 s are shown in Figure 11. It shows curved free-surfaces formed
by non-linear effects of flow.

5.2. Flow-induced sloshing in a thin rectangular tank

For the application of the present method to a problem that has the inlet and outlet flows,
a flow-induced sloshing is analysed. Flow-induced sloshing is one of the important phenomena
for the safety design of liquid metal cooled fast breeder reactors (LMFBRs) to assure stable
flow of the coolant. Okamoto and Madarame [20] performed an experimental investigation of
flow-induced sloshing with various tank geometries. Three flow states were observed in the

Figure 11. Free-surface motions and the inside flows initiated by a pressure spike.

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 30: 407–424 (1999)
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Figure 12. Schematic apparatus of test section.

experiment, i.e. stable state, oscillating state and reverse flow pattern state. In the stable state,
the free-surface and the flow pattern are stable and unique. The main vortex flows in the
counter-clockwise direction with a small vortex at the left bottom corner. Oscillating states
were observed in some geometries, where the free-surfaces periodically oscillate with a certain
amplitude. In the reverse flow pattern state, only one vortex existed in clockwise direction.
Among the various tank geometries, one geometry has been chosen for this study, where the
flow-induced oscillation was observed. It is a two-dimensional rectangular tank with a width
of 1.0 m and a thickness of 0.1 m. An inlet duct of the width 0.1 m was connected horizontally
at the left wall of the tank at the height of 0.2–0.3 m from the bottom. An outlet duct of the
width of 0.1 m is connected at the centre of the bottom. Figure 12 shows a schematic
apparatus of the experimental section. Water is injected with the constant velocity, and the
water level is controlled by an overflow tank.

Numerical simulations were performed using the BFC [15] and PCBFC [16] methods. In the
simulation using the PCBFC method, the free-surface oscillated under a certain water level and
inlet velocity conditions. The secondary flow caused the surface potential variation. The
oscillation energy was assumed to be transferred from the kinetic energy of forced circulation
by a non-linear wave created by the secondary flow. By the BFC method, the mechanism of
the oscillation was quantitatively investigated. The sloshing was considered to depend on the
interaction between the flow and the free-surface. However, in these methods, calculations
failed when the injection velocity was high due to the large deformation of the free-surface.

This experiment is analysed by the particle–gridless hybrid method with several injection
velocities and water levels. Velocity is given at the inlet and outlet, and free-slip conditions are
imposed to the walls to avoid the excessive drag. The number of fluid particles varies from
1018 to 1213 depending on the initial water level, which varies from 0.4 to 0.65 m. Injection
velocities are varied from 0.5 to 1.2 m s−1. The kinematic viscosity is given about 100 times
larger than the value of water in order to account the effect of turbulent viscosity. The time
step is fixed to be 0.005 s.

Figure 13 compares the range of the occurrence of sloshing predicted by present method
with the experimental data in terms of injection velocity and average water level. In these maps
the stable regions where sloshing does not occur is denoted by cross (× ). The experimental
data show that the sloshing has occurred when the injection velocity is between 0.6 and 1.1
m s−1. The sloshing is more likely to occur when the water level is relatively low. The BFC
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method [15] failed the calculation when the inlet velocity is larger than 0.7 m s−1 with the
water level below 0.45 m. This was due to the large deformation of the free-surface. The
present method predicts the occurrence of sloshing fairly good and the simulations proceeded
successfully even with higher injection velocities.

Figure 14 show the computed shapes of free-surfaces and flows of the sloshing at every 0.2
s starting at 24 s when the injection velocity is 1.1 m s−1 and the average water level is 0.5 m.

6. CONCLUSIONS

The particle–gridless hybrid method for analysing incompressible flow has been developed.
The method consists of Lagrangian and Eulerian calculations. For the Eulerian calculation, a
higher-order convection scheme is developed based on a flow directional local grid. It can be
applied to multi-dimensional problems easily since it is based on a one-dimensional local grid.
This scheme is verified for a two-dimensional pure convection problem with uniform and
random particle distributions and the results show that the present scheme is more accurate
and stable than the other methods. For the Lagrangian phase, a new incompressibility model
using velocity divergence is proposed. The pressure gradient model and the diffusion model
developed in MPS method is used.

The present method is first applied to the analysis of sloshing induced by a external pressure
spike. Both the amplitude and the period of sloshing agree well with the results calculated by
the MAC and BFC methods. As an application to a problem that has an inlet and an outlet,
sloshing induced by injected flow is analysed. Occurrence of sloshing is investigated in terms
of the injection velocity and the average water level. The range of the occurrence is nearly the
same with that of the experiment. The analysis is successful using the present method even if
the inlet velocity is more than 1.0 m s−1.

Figure 13. Sloshing map estimated by the present method.
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Figure 14. Sloshing free-surfaces and flows.
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